Chromosome 5 suppresses tumorigenicity of PC3 prostate cancer cells: correlation with re-expression of alpha-catenin and restoration of E-cadherin function.

نویسندگان

  • C M Ewing
  • N Ru
  • R A Morton
  • J C Robinson
  • M J Wheelock
  • K R Johnson
  • J C Barrett
  • W B Isaacs
چکیده

Considerable evidence now exists to support an important role for the E-cadherin-mediated cell-cell adhesion pathway as a suppressor of the invasive phenotype in adenocarcinoma cells. Previous studies have found that this pathway is frequently aberrant in prostate cancers, particularly those that are likely to metastasize. In this study, we report on the effects of re-establishment of this pathway in a prostate cancer cell line, PC-3, in which this adhesion system is dysfunctional by virtue of a deletion of the gene that codes for alpha-catenin, an E-cadherin-associated protein necessary for normal E-cadherin function. Re-expression of alpha-catenin was accomplished either by transfection of PC-3 cells with a copy of the alpha-catenin cDNA under the control of a heterologous promoter or by microcell-mediated transfer of chromosome 5, which contains the alpha-catenin gene and its normal regulatory elements. In both cases, re-expression of alpha-catenin is associated with a similar, dramatic alteration in cell morphology, whereby extensive cell-cell contact is observed. In the case of transfection of the cDNA, this expression is only transient, because the transfected cells either cease to proliferate or, more commonly, revert to the parental phenotype with concomitant cessation of alpha-catenin expression. In contrast, cells containing one or more copies of microcell-transferred chromosome 5 express alpha-catenin in a stable manner and continue to proliferate. Upon injection into nude mice, these latter cells are no longer tumorigenic, or form only slowly growing tumors with greatly extended doubling times when compared to the parental PC-3 cells. During passage in culture, clones that contain only one transferred copy of chromosome 5 reproducibly revert to the parental phenotype. This reversion is associated with loss of the chromosome 5 region containing the alpha-catenin gene and consequent loss of alpha-catenin expression, as well as re-emergence of tumorigenicity. Transfer of chromosome 5 into prostate cancer cells that are E-cadherin negative does not result in either morphological transformation or suppression of tumorigenicity, suggesting that these effects of alpha-catenin expression are dependent upon concomitant expression of E-cadherin. These data demonstrate the tumor suppressive ability of chromosome 5 in the PC-3 prostate cancer cells and suggest that re-expression of alpha-catenin with resultant restoration of E-cadherin function plays a critical role in this process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosome 5 Suppresses Tumorigenicity of PC3 Prostate Cancer Cells: Correlation with Re-Expression of a-Catenin and Restoration of E-Cadherin Function1

Considerable evidence now exists to support an important role for the K-cadherin-mediated cell-cell adhesion pathway as a suppressor of the inva sive phenotype in adenocarcinoma cells. Previous studies have found that this pathway is frequently aberrant in prostate cancers, particularly those that are likely to metastasize. In this study, we report on the effects of reestablishment of this path...

متن کامل

Radiosensitizing effects of Sestrin2 in PC3 prostate cancer cells

Objective(s): The stress-responsive genes of Sestrin family are recognized as new tumor suppressor genes in breast carcinoma, however, the function of Sestrin family in human prostate cancer is not clear. Ionizing radiation (IR) is known to induce Sestrin gene expression in breast cancer cells. However, the response of Sestrin to IR has not been reported in PC3 prostate cancer cells. Materials ...

متن کامل

N-Cadherin Dependent Collective Cell Invasion of Prostate Cancer Cells Is Regulated by the N-Terminus of α-Catenin

Cancer cell invasion is the critical first step of metastasis, yet, little is known about how cancer cells invade and initiate metastasis in a complex extracellular matrix. Using a cell line from bone metastasis of prostate cancer (PC3), we analyzed how prostate cancer cells migrate in a physiologically relevant 3D Matrigel. We found that PC3 cells migrated more efficiently as multi-cellular cl...

متن کامل

Reduction of E-cadherin levels and deletion of the alpha-catenin gene in human prostate cancer cells.

The cadherins are a family of transmembrane glycoproteins responsible for calcium-dependent cell-cell adhesion. This adhesion is mediated by a group of cytoplasmic proteins, the catenins, which act inside the cell to couple the cadherin molecule to the microfilament cytoskeleton. Dysfunction of E-cadherin-dependent cell-cell adhesion has been demonstrated to contribute to the acquisition of inv...

متن کامل

PAQR3 suppresses the proliferation, migration and tumorigenicity of human prostate cancer cells

As a newly discovered tumor suppressor, the potential function of PAQR3 in human prostate cancer has not been demonstrated. In this study, we report that PAQR3 is able to inhibit the growth and migration of human prostate cancer cells both in vitro and in vivo. Overexpression of PAQR3 inhibits the proliferation of PC3 and DU145 cells by both MTT and colony formation assays. Consistently, knockd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 55 21  شماره 

صفحات  -

تاریخ انتشار 1995